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Mixing by random stirring in confined mixtures
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We study the relaxation of initially segregated scalar mixtures in randomly stirred
media, aiming to describe the overall concentration distribution of the mixture, its
shape and rate of deformation as it evolves towards uniformity. A stirred scalar
mixture can be viewed as a collection of stretched sheets, possibly interacting with
each other. We consider a situation in which the interaction between the sheets
is enforced by confinement and is the key factor ruling its evolution. It consists of
following a mixture relaxing towards uniformity around a fixed average concentration
while flowing along a constant cross-section channel. The interaction between the
sheets is found to be of a random addition nature in concentration space, leading
to concentration distributions that are stable by self-convolution. The resulting
scalar field is naturally coarsened at a scale much larger than the dissipation scale.
Consequences on the mixture entropy and scalar rate of dissipation are also examined.

1. Introduction
Stirring motions in deformable media such as fluids distort material lines and in-

crease their length. A scalar blob is, generically in an incompressible medium, stretched
in one direction and compressed in the other, the underlying motions being either
persistent, smooth and time-dependent (chaotic) or turbulent. The blob’s resulting
topology is that of a convoluted sheet in three dimensions. For a diffusive scalar the
kinematics of the flow affects the resulting convection–diffusion problem and defines
the mixing time ts (see Appendix A). Beyond that time, the sheet has a transverse width
s(ts) which remains constant or re-increases slowly, equilibrating diffusive broadening
and substrate compression, while its stretched dimensions continue to expand.

Let us take the simple example of a blob of initial size s0, stirred in two dimensions
by a constant stretching rate γ (see Appendix A). The length of the blob is �(t) = s0 eγ t

and, after the mixing time ts = (1/2γ ) ln(γ s2
0/D) in which D is the scalar diffusivity, it

has the shape of a lamella whose transverse width is s(ts) =
√

D/γ . The net surface
area A(t) of the lamella is thus

A(t) = s0

√
D/γ eγ t . (1.1)

If the stirring protocol occurs on a finite size domain with fixed area A0, it is clear
that as soon as A(t) > A0, some stretched/folded parts of the lamella will have to
overlap and merge. The phenomenon is for example obvious in figures 1 and 5. From
that instant of time, the resulting mixture cannot be viewed as a set of independent
pieces of lamellae, and the interaction between these pieces has to be accounted for
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Figure 1. Close-up of the merging process of two nearby sheets in a set-up
similar to that of figure 2.

to understand the fate of the overall mixture. Owing to the linearity of the Fourier
diffusion equation, the concentration profile of any blob of size s0 is obtained by
a summation of the impulse response of the diffusion equation (C0dξ/2

√
πτ ) e−ξ 2/4τ

over the initial width of support (i.e. {−s0/2, s0/2} in one dimension) as (Fourier 1822
and Appendix A)

C(ξ, τ ) =

∫ 1/2

−1/2

C0dξ ′

2
√

πτ
e−(ξ−ξ ′)2/4τ . (1.2)

The concentration profile of a set of two lamellae such as those shown in figure 1,
respectively characterized by profiles C1(ξ, τ ) and C2(ξ, τ ), is thus obtained by the
summation

C(ξ, τ ) = C1(ξ, τ ) + C2(ξ, τ ). (1.3)

The elementary composition rule of (1.3) is the building block of the evolution of a
complex mixture.

A further indication of the nature of the interaction is given by considering the
scalar field resulting from the merging of two independent scalar plumes.

1.1. Interacting plumes and composition rule

Consider two scalar sources, independent of each other and separated by a distance of
the order of the integral scale of the flow L, merging in a turbulent medium as shown
in figure 2. Let P1(C) and P2(C) be the elementary histograms of each of the two
sources at one point in the flow obtained, for instance by switching one of the sources
on while the other is off and vice versa, and let P1+2(C) be the compound histogram
at that same location as illustrated in figure 3. As long as the plumes emanating
from each of the sources do not interfere, the sources develop in an anti-correlated
manner: the concentration measurement point is either in one plume or in the other,
and the compound histogram is simply the weighted sum of the original ones (see
also Warhaft 1984). Then, as soon as the plumes merge, it is experimentally observed
that P1+2(C) is very close to the convolution of P1(C) and P2(C). In other words, the
concentration C in a region of a flow is the sum of the concentrations C1 from plume
1 and C2 from plume 2 in the same region, C1 and C2 being chosen ‘independently’
in each of the original distributions provided that C = C1 + C2. This fundamental
observation is written

P (C) =

∫ C

0

P1(C1)P2(C2) dC1, (1.4)

where C =C1 + C2. The same observation is made by dividing a single plume in two,
each sub-plume being marked with a different colour.
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Figure 2. Two sources discharging in a turbulent medium in which they mix. Their
separation is of the order of the local integral scale L.

1.2. Compound plume

A coherent compound plume is realized by injecting two different scalars through
two nearby tubes of diameter d � L, as seen in figure 4. Planar measurements of the
fluorescent scalar field are obtained by shining a plane mono-mode (488 nm) Argon
laser sheet through the water tank in a plane containing the axis of the mean flow. A
768 × 1024 wide 3-CCD camera at 10 bits per pixel images the field. As opposed to
the case presented above, the two scalars are initially injected at the same location in
the main jet, where they are subjected to strongly correlated motions.

The resulting distributions are shown in figure 4. The global scalar field of the
‘super’ stream (obtained by deliberately making indiscernible the red and the green)
is made up of the independent contribution of two elementary streams (the red
and the green). Although injected nearly at the same location in the flow and thus
subjected to similar histories at the beginning, fluid particles from the green stream are
independent from those coming from the red stream at x/d = 30. Since the distinction
between red and green particles was made arbitrarily in these experiments, it can be
concluded that a single plume is the result of the random superposition of smaller
plumes. The same experiments have been done using a coaxial jet, with the same
results.

The random interaction rule in (1.4) was first proposed in a related manner by Curl
(1963) and since then has been referred to as the celebrated ‘coalescence–redispersion’
model: particles meet at random, and as they coalesce their concentration levels
are equalized before breaking up to meet other particles in a sequential fashion. A
very similar construction was imagined by von Smoluchowski (1917) to represent the
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Figure 3. Composition of sources of heat (top; Sc =7, x/d = 12) and fluorescein (bottom,
Sc = 2000; x/d =13) in water in a set-up like the one of figure 2. (a) Distributions of the
bare sources P1(C) and P2(C). (b) Reconstruction of the scalar field from P1(C) and P2(C) by
convolution (circles) and comparison with the actual distribution P1+2(C) in the presence of
two sources (solid line).
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Figure 4. (a) A compound plume made of rhodamine (red) and fluorescein (green), injected
by two identical nearby tubes of diameter d = 8 mm. (b) Concentration distributions of a
rhodamine stream (red) and fluorescein stream (green) recorded at a distance x/d = 30 from
the injection location and resulting distribution of the whole scalar field making no distinction
between both scalars (black) compared to the one expected from a pure independence of the
two fields (dotted line), namely the convolution operation of (1.4).

kinetic aggregation of colloidal particles and the distribution of the particle cluster
sizes. Pumir, Shraiman & Siggia (1991) have, in a slightly different context, developed
the same ideawhich leads to an evolution principle for P (C, t) based on its convolution
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with itself, reflecting the random addition of the scalar levels C in the mixture.
Villermaux & Duplat (2003) have further suggested that the composition of random
mixtures could be represented along these lines, and provided some experimental
evidence and a kinetic equation for P (C, t) (see also Venaille & Sommeria 2007).
The present work makes this point of view more precise, presents new experimental
evidence and documents some of its consequences.

2. Mixing in a confined environment
2.1. Square channel flow

A turbulent jet of water plus diluted fluorescein discharges in a square transparent
long duct. The jet and the duct are immersed in a large tank filled with water at
rest. The jet exit velocity u is such that Re = ud/ν � 104 with a turbulence intensity
u′/u about 8% in that case (Schlichting 1987). For a given duct cross-section, the
injection diameter d and the velocity of the co-flow at the entrance of the duct can
be varied so that the average concentration of the dye in the channel 〈C〉 can be set
at will. Since the cross-section of the duct and the average velocity of the mixture in
the downstream direction are constant, the average concentration is conserved. The
experiments presented here have been done with d = 8 mm and a square (L × L with
L = 3 cm) duct. Planar measurements of the fluorescent scalar field were obtained by
shining a plane mono-mode (488 nm) argon laser sheet through the water tank in a
plane containing the axis of the mean flow. The images were recorded by a cooled 12
bits 1280 × 1024 pixels wide CCD camera.

As can be seen in figure 5, the dye rapidly invades the whole cross-section of
the duct, and its concentration differences are progressively erased while travelling
downstream to relax towards a more or less uniform mixture. After the dye has filled
the channel cross-section and evolved around a constant average concentration, the
distribution P (C) presents a skewed bell-like shape which gets narrower around 〈C〉
in time. Axial distances x are converted to time t through the average axial velocity
u with confidence, as it is known that radial velocity profiles in a turbulent duct are
flat (u′/u ≈ 0.08; see Schlichting 1987) so that

x = u t. (2.1)

As shown in figure 6, the shape of P (C) is very well described by a family of
one-parameter distributions, namely gamma distributions of the form

P (X = C/〈C〉) =
nn

Γ (n)
Xn−1 e−nX. (2.2)

The parameter n is adjusted at each downstream location for the gamma distribution
of (2.2) to fit the experimental one. It is seen in figure 6 that the fairness of the fit
holds for the whole concentration range, down to low probability levels, and accounts
for the downstream deformation of P (C) through the single parameter n, whose
dependence on the downstream location is quite strong: figure 6 suggests a power-law
type of dependence with an exponent between 2 and 3; the line drawn has a slope
5/2. The dependence of n on the jet Reynolds number is, if noticeable, very weak,
when Re is varied by a factor 2, as noted in Villermaux & Duplat (2003).

3. Self-convolution processes
As they are brought together in the flow, scalar sheets interpenetrate to give

rise to new sheets whose concentration profile is the addition of the original ones
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Figure 5. Mixing of a dye discharging from a jet of diameter d = 8 mm in a square (L × L
with L = 3 cm) duct. From 1 to 4, successive instantaneous planar cuts of the scalar field at
increasing downstream locations in the duct, showing the progressive uniformization of the
dye concentration levels.

(figure 1). This elementary interaction rule, that is the addition, is a consequence of
the linearity of the Fourier diffusion equation. We show below how this rule, plus an
additional assumption on the nature of the interactions in the flow, implies a kinetic
evolution equation for the distribution of the concentration levels P (C, t) as time
progresses.

3.1. Detailed process

We conjecture that the impact of turbulence on the process is to make the additions
of the concentration levels in the flow at random; this is in fact the only feature on
which we need to proceed, and this feature completely characterizes the nature of the
mixture evolution in a particular limit at least. In the following, a concentration level
C means the ‘maximal’ concentration C(0, t) across a given sheet, and we disregard
the contribution of the intermediate levels of the spatial profile C(z, t) to the global
distribution P (C); this is justified as soon as t > ts (a discussion of which can be found
in Meunier & Villermaux 2003; see also Appendix A). Since the concentration levels
C each sheet carries are random variables, the addition of these variables translates,
in the probability density function space P (C), in a convolution. There are in fact
many different ways to represent this process; we single out two extremes (see also
figure 7) before giving the general formulation. Let the merging rate of two nearby
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Figure 6. Downstream evolution of the concentration distribution P (C) as the dye progresses
along the duct as shown in figure 5. The concentration distribution of the evolving mixture gets
narrower around the average concentration 〈C〉 = 0.3. Solid line: experimental distributions.
Broken line: distributions given by (2.2). Insert: fitting parameter n of the distribution (2.2) as
a function of the downstream distance (x − d)/L = 1 (�), 1.5 (�), 2.5 (�). Re = 4 × 103.

sheets be r:
(i) First, one can imagine that at time t , a fraction ε of the sheets in the flow volume

undergoes a complete addition with its neighbours, the other fraction 1 − ε being left
unchanged with respect to this addition process because those sheets of which it was
a part had no neighbours at that instant of time. Thus, the distribution P (C, t + δt)
at time t + δt will be such that

P (C, t + δt) = εP ⊗2(C, t) + (1 − ε)P (C, t), (3.1)

where P ⊗2(C, t) = P (C, t) ⊗ P (C, t) stands for the self-convolution of P (C, t), as de-
fined in (1.4) and where

ε = rδt. (3.2)

It is useful to consider the Laplace transform of P (C), which conveniently transforms
convolution products into simple products

P̃(s) =

∫ ∞

0

P (C) e−sC dC, (3.3)

and rewrite (3.1) in the differential limit rδt → 0 as

∂t P̃ = r(−P̃ + P̃ 2), (3.4)
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Figure 7. Self-convolution processes: illustration of the two extreme routes of (3.4) and (3.7)
for the initial condition P (x, t = 0) = δ(x − 1) shown in (a). The complete convolution on a
discrete time scale route ∂t P̃ = r(−P̃ + P̃ 2) is shown in (b) to give rise for P (x, t) to a series
of Dirac deltas at integer values of x with an exponentially decaying envelope e−x/ert

/ert .
Convolution on a continuous time scale ∂t P̃ = rP̃ ln P̃ translates, as shown in (c), the initial
condition on the x-axis such that P (x, t) = δ(x − ert ).

an equation familiar in the context of kinetic aggregation since von Smoluchowski
(1917) and whose asymptotic solution is the decaying exponential

P (C, t) ∼ exp

(
− C

e
∫ t

0 rdt ′

)
. (3.5)

This defines a particular route for the evolution of P (C), made up of an intermittent
sequence of complete convolutions on a ‘discrete’ time scale δt: a small fraction of
the sheets in the flow undergo a complete addition from step to step.

(ii) Another way to represent the self-convolution process directing the evolution of
P (C) is to assume that the convolution operation occurs on a ‘continuous’ time scale
everywhere in the flow, with all sheets merging with their neighbours in a continuous
way, therefore altering the distribution P (C) even on an infinitesimal time scale. In
that case, the equivalent of (3.1) written for the evolution for the Laplace transform
of P (C) is

P̃ (s, t + δt) = P̃ 1+ε(s, t) = P̃ (s, t) exp(ε ln P̃ (s, t)). (3.6)

Writing eε ln P̃ (s,t) ≈ 1 + ε ln P̃ (s, t) in the differential limit ε = rδt → 0, (3.6) leads to

∂t P̃ = rP̃ ln P̃ , (3.7)
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whose solution obviously leads to a true self-convolution of the initial distribution
P (C, t = 0) as

P (C, t) = P (C, t = 0)⊗exp(
∫ t

0 rdt ′), (3.8)

with no universal asymptotic shape (see also Venaille & Sommeria 2007). This defines
another route for the evolution of P (C), made up of a continuous convoluted process:
all sheets undergo additions continuously, everywhere in the flow.

The above two routes appear as two distinct limits of the more general evolution
equation

∂tP = rn
(
−P + P ⊗1+1/n

)
, (3.9)

expressing the self-convolution of P ≡ P (C, t) within a one-parameter equation whose
solutions define a ‘unique’ family of distributions, parameterized by the unique
parameter n. One recovers the intermittent sequence with discrete time of (3.1) with
n = 1, and the progressive uniform process continuous in time of (3.7) is recovered
with n → ∞.

3.2. The Liouville term and the general kinetic equations

Concomitant to the addition process which alters its shape as time progresses, the
change of P (C, t) is also due to the trivial decay of C due to stretching: this results
in a global shift of P (C, t) towards lower concentration levels through the mass
conservation balance

P (C + δC, t + δt) = P (C, t), (3.10)

in the absence of other effects altering the shape of the distribution, where δC is the
decrement of concentration by stretching during the time interval δt . This contribution
to the rate of change ∂tP (C, t) is the familiar Liouville term

− ∂

∂C

(〈
δC

δt

〉
P

)
= γ

∂

∂C
(CP ) , (3.11)

where the decrement 〈
δC

δt

〉
= −γ (t)C (3.12)

defines γ (t) and depends on the particular type of substrate deformation. If for
instance the concentration in the sheets is such that C ∼ (σ t)−β−1/2, then γ (t) = (β +
1/2)/t . This global shift contributes, in all cases, in an additive manner to the overall
rate of change of P (C, t) owing, again, to the linearity of the microscopic diffusion
equation.

3.2.1. Mixtures with conserved average concentration

Adding the Liouville global shift to the convolution contribution results in the
overall mixture equation, describing its concentration content as a function of time

∂tP = γ ∂C (CP ) + rn
(
−P + P ⊗1+1/n

)
, (3.13)

whose version in the Laplace space reads

∂t P̃ = −γ s∂sP̃ + rn
(
−P̃ + P̃ 1+1/n

)
. (3.14)

From the chain rule giving the qth moment of the concentration distribution from
its Laplace transform 〈Cq〉 =(−1)q∂qP̃ /∂sq |s =0 and remembering that P̃ (s = 0, t) = 1
because P (C, t) is a normed density probability function, one readily checks that the



60 J. Duplat and E. Villermaux

average concentration 〈C〉 = −∂P̃ /∂s|s =0 is conserved when the damping Liouville
factor balances exactly the increase of concentration with sheet coalescence, i.e. when

γ = r. (3.15)

With the above condition fulfilled, (3.14) is the expansion for large n of

∂t P̃ (s, t) = γ n

(
−P̃ (s, t) + P̃

(
s

1 + 1/n
, t

)1+1/n
)

, (3.16)

which is the Curl’s evolution equation (written in Laplace space) generalized to
arbitrary n, the strict Curl’s equation corresponding to n= 1 (Curl 1963).

The structure of the kinetic equation (3.14) with γ = r is such that the average
concentration is conserved whatever the value of n, with no constraint or link with
the parameter which contains the information on the stirring strength of the flow, that
is the stretching rate γ . However, stretching and merging of the sheets are intimately
linked. It is because the sheets are stretched that their concentration decreases and
also because they are stretched that they are brought together and merge. It is thus
natural to relate n to γ by

dn

dt
= γ n. (3.17)

Setting dn/dt = ṅ, the asymptotic solution to (3.14) is found by making use of the
following transformations (see e.g. Friedlander & Wang 1966):

P (C, t) =
1

〈C〉F (η, τ ),

η =
C

〈C〉 ,

τ = t,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.18)

where 〈C〉 is the conserved average concentration. This is most conveniently done
with the Laplace transform P̃ (s, t) defined in (3.3) for which the transformations in
(3.18) are such that

P̃ (s, t) = F̃ (s ′, τ ) with s ′ = 〈C〉s, (3.19)

where F̃ (s ′, τ ) is the Laplace transform of F (η, τ ) in η. Noting that

s
∂P̃

∂s
= s

∂F̃

∂s ′
∂s̃ ′

∂s
= s〈C〉∂F̃

∂s ′ = s ′ ∂F̃

∂s ′ , (3.20)

the scaled distribution F (s ′, τ ) finally obeys

∂τ F̃ + γ s ′∂s ′ F̃+ = ṅ
(
−F̃ + F̃ 1+1/n

)
. (3.21)

The only place where τ explicitly enters into (3.21) is the term ∂τ F̃ . Looking for a
self-preserving solution to (3.21) independent of time and solely a function of C/〈C〉
and n and remembering that ṅ= γ n, we seek a solution to

s ′∂s ′ F̃ = n
(
−F̃ + F̃ 1+1/n

)
, (3.22)

which is

F̃ =

(
1 +

s ′

n

)−n

, (3.23)

thus, together with n= exp
∫ t

0
γ (t ′) dt ′, solving the search for the full concentration

distribution P (C, t). Indeed, the inverse Laplace transform of (3.23), with s ′ = 〈C〉s,
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is a gamma distribution of order n and average 〈C〉:

P (X = C/〈C〉) =
nn

Γ (n)
Xn−1 e−nX. (3.24)

This distribution was found to closely fit the experimental distribution of the mixture
confined in a channel in § 2. These experiments have also revealed the time dependence
of order n, which can now be understood by the coalescence process giving birth to the
distribution (3.24): although the concentration of each individual element C ≡ C(0, t)
decreases in time because of stretching, the average concentration of the mixture 〈C〉
is conserved. This is so if the coalescence rate balances the Liouville damping factor.
The piling-up of the concentration levels by coalescence contributes to the increase
of the average concentration by a factor given by (3.9), that is exp{

∫
dn/n} = n. The

average concentration is thus conserved provided

n =
1

C(0, t)
∼ t ν, (3.25)

where ν =5/2 (see Appendix A), from which one recovers the definition of n through
ṅ/n = γ and γ = −d lnC(0, t)/dt . This is also consistent with the experimentally
measured time dependence of n, reported in figure 6.

The parameter n is the number of convolutions, and its variation in time induces the
rate of deformation of the concentration distribution.

3.3. An alternative description

The construction mechanism of the concentration distribution we have given above
relies on random addition of concentration levels with a ‘fixed’ number of additions
n at a given instant of time. We show now that the very same result for P (C, t) can
be interpreted in a dual form, where elementary sheets bearing a fixed concentration
level solely dependent on time through stretching undergo random additions whose
number is distributed.

We call p0(C, t) the distribution of concentration of a single isolated sheet. Suppose
now that k of these sheets have merged to give rise to a bundle of concentration
C, and suppose that the number k is itself distributed among different bundles
with distribution Q(k) at a given instant of time. Then the macroscopic probability
distribution of the concentration levels in the bundles is

P (C, t) =

∫ ∞

0

dkQ(k)p⊗k
0 , (3.26)

where the symbol ⊗ denotes, as before, convolution with respect to concentration.
The distribution Q(k) is that of the number of aggregations k. Let us, for example,
model its evolution by the irreversible aggregation scenario with discrete time we
have introduced before leading to an equation of type (3.1):

∂tQ(k) = Q(k)⊗k2 − Q(k), (3.27)

where ⊗k now denotes a convolution with respect to the number k. Inserting it into
(3.26) gives

∂tP (C, t) =

∫ ∞

0

dk∂tQ(k)p⊗k
0 =

∫ ∞

0

dk(Q(k)⊗k2 − Q(k))p⊗k
0 , (3.28)
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which we rewrite by splitting k into k1 and k2 and expressing the convolution integral
on Q(k) as

∂tP (C, t) =

∫ ∞

0

dk1dk2Q(k1)Q(k2)p
⊗k1

0 ⊗ p
⊗k2

0 − P (C, t), (3.29)

which can be further rearranged by separating the variables of integration as

∂tP (C, t) =

(∫ ∞

0

dk1Q(k1)p
⊗k1

0

)
⊗

(∫ ∞

0

dk2Q(k2)p
⊗k2

0

)
− P (C, t), (3.30)

giving finally

∂tP (C, t) = P (C, t)⊗2 − P (C, t), (3.31)

actually coinciding with the expected evolution equation for P (C, t) itself, which is
characteristic of an aggregation process with discrete time but now derives from the
distribution of the number of sheets that have aggregated.

4. Consequences
The detailed knowledge of the mixture’s concentration distributions allows us to

examine a posteriori some quantities which are usually modelled, or inferred, using
additional hypotheses.

4.1. Coarse-grained scale

There are several physical length scales naturally involved in a stirred mixture. First,
without stirring, that is in the pure diffusion limit on a still substrate, an obvious
spatial scale is the initial size s0 of the blob deposited in the medium. The concentration
in the blob is appreciably decayed from its initial value when the blob is smeared
by diffusion, that is when its current radius

√
Dt is appreciably larger than s0, and

this of course happens when t � s2
0/D. With stretching, the picture is substantially

altered.

4.1.1. Local dissipation scales

Diffusive smearing is hastened in the presence of stirring because the scalar gradient
is constantly steepened by the stretching. This, in turn, also alters the characteristic
scale of the field itself. When the stretching of material surfaces is algebraic in time
for instance, that is when s(t) = s0(1 + σ t)−β with β some positive exponent, the
concentration gradient at the mixing time spans a typical distance of the order of

s(ts) ∼ s0(σ ts)
−β = s0Pe−β/(2β+1) � s0 when Pe =

σs2
0

D
� 1 (4.1)

after re-increasing like
√

Dt because the rate of stretch diminishes in time like γ ∼ 1/t .
This scale also sets the width of an isolated blob dissipating in the medium. If the
rate of stretch γ is constant in time, then the typical size of the scalar gradient which
‘dissipates’ the scalar differences equals

s(ts) ∼ s0 e−γ ts =

√
D

γ
, (4.2)

usually called the Batchelor scale after Batchelor (1959). The above scales are obtained
by balancing the rate of compression γ (t) = d ln s(t)/dt with the diffusive rate of
broadening D/s(t)2. The same procedure can be further generalized to a stretching,
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or compression, rate γ (s) which is constant in time but depends on the separation
distance s. Choosing for instance γ (s) ∼ (εs)1/3/s, as sometimes invoked in high-
Reynolds-number turbulent flows (Frisch 1995), the corresponding ‘dissipation scale’
equilibrating substrate compression and diffusive broadening is(

D3

ε

)1/4

, (4.3)

where ε stands for the rate of dissipation of mechanical energy per unit mass in the
flow, a scale usually referred to as the Corrsin–Obukhov length scale (after Corrsin
1951 and Obukhov 1949).

Let us also mention that this local equilibrium paradigm applies beyond the scalar
mixing context and is successful at describing the aspect ratio of drops immersed
in a non-miscible sheared substrate (Stone 1994) or the maximal size of drops and
bubbles in a turbulent flow (Clay 1940; Hinze 1955) by an appropriate balance
between hydrodynamics stresses and capillary restoration forces at the scale of the
drops themselves.

4.1.2. The coarse-grained scale

All the above scales describe the size of an isolated object arising from the ‘local’
balance between a time characteristic of the motions in the underlying substrate and
a diffusion time. However, we have shown how the global concentration content of
a stirred mixture results from the merging of nearby objects, namely scalar sheets,
which interact through a random aggregation process. This phenomenon has an effect
on some geometrical facets of the mixture. In particular, we show below that the
concentration field C of the mixture is smooth on a scale which is much larger than
the typical scale of its gradient estimated from the above length scales and that this
coarse-grained scale directly reflects the aggregation construction of the concentration
field.

We denote as V>(r) the variance of the concentration field coarse-grained at scale
r . If F (k) is its spectrum, then

V>(r) =

∫ 2π/r

2π/L

F (k) dk. (4.4)

Equivalently, V>(r) can be computed by filtering the original concentration field C(x)
with a top-hat window of width r defining a coarse-grained field Cr = C(x) ⊗ Hr (x)
with Hr (x) equal to 1/r for 0 < x < r and equal to 0 for x > r . Then

V>(r) = 〈(Cr − 〈Cr〉)2〉. (4.5)

We have used definition (4.5) to compute V>(r) from the experimental concentration
signals. The operation is shown visually in figure 8. The dependence of V>(r) on r is
shown in figure 9 for different injection and stirring conditions. The coarse-grained
variance presents an inverted S shape, which shares some of its features with P (C)
itself: it is independent of the Reynolds number Re and is shifted by varying the
diffusivity of the scalar measured by Sc. It is, however, independent of the scalar
injection scale d . Half of the variance has been erased by coarse-graining the field up
to the scale r = η, which coincides approximately with the location of the S-shaped
inflection point. All measurements for different scalars and flows are reported in
figure 10. They are consistent with

η = LSc−2/5. (4.6)
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Figure 8. Coarse-graining operation of the scalar field. The field has been coarse-grained up
to the scale η.

The coarse-grained scale η solely depends on the large stirring scale of the flow and on
the diffusional properties of the scalar. This is the minimal ‘scale of scrutiny’ devised
by Danckwerts (1953) to describe a mixture. We explain its origin below.

4.1.3. Aggregation of a bundle of sheets

We do not consider any more an isolated scalar sheet being stretched but instead
a bundle of parallel sheets in the process of merging into each other under the
action of a large-scale stretching rate. As outlined earlier, this process is the one
occurring permanently in a stirred mixture and which gives rise, in the confined case
in particular, to the self-convoluting construction of the concentration distribution.

We will consider that the sheets are stretched in two directions parallel to their plane
under the action of an elongation rate σ , identical in the two directions, constant in
time and uniform over a scale L. We choose a simple initial scalar field C(x, t = 0)
consisting of a bundle of parallel sheets, each separated from its immediate neighbours
by a distance 2π/k0 and piled up over a distance of the order of L. The sheets are
compressed in the direction parallel to their transverse size. We first disregard the
distribution of the concentration levels between the sheets. A functional form for
C(x, t = 0) having the required features is

C(x, t = 0) = 1 + cos(k0x) for − L/2 < x < L/2 (4.7)

and equal to 0 elsewhere. The convection diffusion equation

∂C

∂t
+ γ (t)z

∂C

∂z
= D

∂2C

∂z2
(4.8)

with γ (t) = d ln s(t)/dt is transformed in a pure diffusion equation by the same
space and time transformation as the ones used in Appendix A. It is solved with
s(t)/s0 = 1/(1 + σ t)2 to give the concentration field at any time as

C(x, t) = 1 + cos(ξ ) e−τ (4.9)

with

ξ = k0x(1 + σ t)2 and τ =
Dk2

0

5σ
(−1 + (1 + σ t)5). (4.10)
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Figure 9. The coarse-grained variance of the concentration field V>(r) as a function of the
coarse-grained distance r for different scalars and stirring conditions with L = 6 cm. (a) V>(r)
versus r for three Schmidt numbers at a fixed location downstream of the scalar source.
Half of the variance of the field has been erased by coarse graining at the scale r = η,
which depends on Sc. (b) At a fixed location x/d = 20 downstream of a d = 3.3 cm source
in air (Sc =0.7) for u = 3 m s−1 (Re = 9000), u =6.2 m s−1 (Re = 19 000) and u =11.6 m s−1

(Re =35 000). The corresponding Corrsin–Obukhov length is ηCO = LRe−3/4Sc−3/4 ≈ 0.1 mm.
(c) At a fixed location x/d = 12.5 and Sc = 7 for Re = 6000 and two different injection diameters
d = 6 mm (dotted line) and d = 10 mm (continuous line). The corresponding Batchelor length
is ηB =LRe−3/4Sc−1/2 ≈ 0.03 mm. (d ) Change of the concentration distribution P (C) as the
coarse-graining scale is increased for x/d = 10, Sc = 0.7 and Re = 45 000: r = 2 to 256 mm by
factors of 2. There are five curves with r < η and three with r > η (dashed line).

The time needed to complete the coalescence of the sheets in the bundle is the time
required to make the concentration modulations small compared to unity, that is to
make the factor e−τ appreciably small (see (4.9)). This occurs from the instant of time
making τ of order unity, defining again the mixing, or coalescence, time as

ts ∼ 1

σ
Pe1/5 with Pe =

σ

Dk2
0

� 1. (4.11)

At that instant of time, the concentration in the bundle of merged sheets is close to
uniform, the modulations having been essentially erased. The transverse size of the
bundle, initially equal to L, has decreased accordingly. It has been compressed by an
amount (1+σ ts)

2 ≈ Pe2/5 (see Appendix A). The transverse size of the bundle defining
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Figure 10. Coarsening scale η versus integral scale L measured for the flow conditions of
figure 9, including a broad range of integral scales L and three different Schmidt numbers Sc.
The insert shows that η is proportional to L (lines slopes being unity), and the figure suggests
that η = LSc−2/5 is consistent with the observed Schmidt number dependence of η.

a region of close-to-uniform concentration is thus

η = LPe−2/5. (4.12)

If finally k0 is further set at s−1
0 ∼

√
σ/ν, then Pe= σ/Dk2

0 = ν/D = Sc, and η coincides
with the anticipated value given in (4.6).

This result is not contingent upon the particular choice made for the initial
concentration profile in (4.7). If instead one considers a set of adjacent sheets of
width s0 with distributed initial concentrations, the spectrum of such a concentration
field can be computed exactly as

F (k, t = 0) =
σ 2

0

πs0k2
(1 − cos(ks0)), (4.13)

if σ 2
0 = V>(0) is its initial variance. Making the change of variables

F̂ (kξ , τ ) = s(t)F (kξ/s(t), t(τ )), (4.14)

it is readily seen from the diffusive relaxation of the spectrum that the variance σ 2 at
any later time is

σ 2 =

∫ +∞

−∞
dkξ F̂ (kξ , τ ) =

∫ +∞

−∞
dkξ F̂ (kξ , 0) exp

(
−2k2

ξ τ
)
, (4.15)

that is
σ 2

σ 2
0

=
1√
πψ

(
e−ψ2 − 1

)
+ erf(ψ) (4.16)

with ψ = 1/
√

8τ . The variance has been reduced by a factor close to 1/2, when ψ =1,
which is precisely the criterion used to define η. The analysis is readily generalized to
the more realistic situation in which initial sheet thicknesses are distributed, as is the
case in nature (see e.g. Schumacher, Sreenivasan & Yeung 2005).

The above mechanism showing the existence in the scalar field of a scale of the order
of the large stirring scale is reminiscent of the ramp–cliff–plateau structures observed
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η

η

Figure 11. Definition sketch of a micro-state to compute the number of complexions w.
There are k sheets of concentration c(0, t) each per minimal coarse-graining cell of linear size
η (artificially enlarged here), giving a coarse-grained concentration C = kC(0, t).

long ago in shear flows. In it, L-wide regions of nearly uniform concentration are
separated by steep cliffs absorbing a concentration difference of the order of the mean
(Sreenivasan 1991; Holzer & Siggia 1994; Pumir 1994; Warhaft 2000). Villermaux &
Duplat (2006) and Chertkov, Kolokolov & Lebedev (2007) have noted the possibly
strong effect of weak molecular diffusion at large scales, invoking a mechanism similar
to the one described here.

4.2. Entropy

The scalar field is composed of a number of elementary sheets which are nested
in bundles of linear size η. This nesting operation defines, through the aggregation
scenario described earlier, the macroscopic concentration levels C and their relative
occurrence in the field P (C). We wish now to compare this concentration distribution
with the one which would be obtained from a purely random scatter of the sheets
in space. We will therefore consider a closed system characterized by an invariant
average concentration 〈C〉.

Let us thus consider a partition of space, consisting of N boxes of size η in which
are scattered K elementary sheets as in figure 11. We call nk the number of boxes
bearing k sheets, and the average number of elements per box is 〈k〉 = K/N . There
are obviously a number of ways to realize a given partition {nk}. Since the number of
elementary sheets k in a box define the concentration C of that box, the number nk is
also the number of times the concentration C will be found in the field. The number
of microscopic states leading to a given partition {nk} (see e.g. Mayer & Mayer
1966), and thus to a given realization of the macroscopic concentration distribution,
is

w({nk}) =
N!

K∏
k=0

nk!

.
K!

K∏
k=0

(k!)nk

, (4.17)
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together with the conservation laws

K∑
k=0

nk = N and

K∑
k=0

knk = K. (4.18)

The structure of (4.17) is as follows: The number of distinguishable arrangements
in the set of the {nk} boxes into N boxes is N!/

∏
k nk!, while any permutation of

the k elements in a given box leads to the same macroscopic concentration, hence
the factor K!/

∏
k(k!)nk . The number of microscopic states w({nk}) has a maximum

for a particular partition {nk}. We look for the maximum of w({nk}) by letting
the values of nk vary by an amount δnk with the constraints δK =

∑
k kδnk = 0 and

δN =
∑

k δnk = 0. Looking for the maximum of w({nk}) is equivalent to looking for the
maximum of its logarithm; writing δ lnw({nk}) = 0 leads to

K∑
k=0

δnk{−(ln nk + ln k!) + αk + β} = 0, (4.19)

where α and β are Lagrange multipliers, such that the conservation laws of (4.18) are
fulfilled. The optimal distribution pk = nk/N is a Poisson distribution

pk =
nk

N
=

〈k〉k

k!
e−〈k〉 (4.20)

of parameter 〈k〉, the average number of elements per box. This is the distribution of
the number of objects in a regular partition of space, when the objects are spread at
random; it is, besides, readily obtained from binomial counting

pk =

(
1

N

)k (
1 − 1

N

)K−k
K!

k!(K − k)!
, (4.21)

in the limit in which the occupancy probability of one box by one sheet 1/N

goes to zero (i.e. very large sample). This distribution is not uniform, but tends
towards a uniform distribution centred on the mean 〈k〉 = K/N for K → ∞ at
fixed mean. It is sometimes encountered with low-inertia particles in turbulent flows
(Eaton & Fessler 1994; Lei, Ackerson & Tong 2001). Since each elementary sheet
has a concentration C(0, t), each of the nk coarse-grained boxes has a macroscopic
concentration C ∼ kC(0, t). The distribution of the number of objects per coarse-
graining scale of (4.20) thus gives rise to a macroscopic concentration distribution
PE(C) given by

PE(X = C/〈C〉) =
nnX+1e−n

(nX)!
, (4.22)

where n= 1/C(0, t) as defined in § 3 is the number of sheets needed to maintain the
average coarse-grained concentration 〈C〉 constant when C(0, t) decreases. Obviously,
〈k〉 = K/N = n and

C

〈C〉 =
k

n
. (4.23)

The maximum entropy distribution of (4.22) is compared in figure 12 with the gamma
distribution of (2.2). Both present the same positively skewed shape and are close
in absolute values, although PE(C) decreases faster than in an exponential manner
(i.e. like exp{−nX ln(nX)}) at large excursion. Both distributions tend towards the
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Gaussian with precision 1/
√

n according to the standard result

1√
2πσ

exp

(
− (X − 1)2

2σ 2

)
with σ 2 =

1

n
. (4.24)

Defining the entropy of the distribution pk by S = lnw (after Gibbs 1901), from
the number of states of (4.17) one has

S − S∞

N
= −

K∑
k=0

(
pk lnpk + pkk ln

k

〈k〉

)
(4.25)

or

S − S∞

K
= − 1

〈k〉

K∑
k=0

(
pk lnpk + pkk ln

k

〈k〉

)
, (4.26)

where S∞ = 〈k〉N lnN = K lnN is the entropy of the uniform distribution with k = 〈k〉
objects in each of the N coarse-grained cells. The entropy of the uniform distribution
S∞ is proportional to the number of sheets K . As expected, the entropies of the
Poisson and gamma distributions are very close and larger than that of the uniform
distribution (i.e. S − S∞ is positive) but by a small amount decreasing logarithmically
with 〈k〉 = n, as shown in figure 12.

The random addition of the scalar sheets by a continuous process, which is the
aggregation scenario described in § 3 giving rise to the gamma distributions, thus
produces a composition field which is slightly different from the sampling of a purely
random spatial dispersion of the sheets. In particular, and contrary to the intuition
of J. W. Gibbs, the composition field obtained by random stirring is not the one with
maximal entropy (Gibbs 1901; see in particular the excellent chapter XII in which
he devises an analogy for a maximum entropy system based on ‘stirring colouring
matter’ in a fluid). As long as the mixture evolves by self-convolution, it does not reach
‘thermal equilibrium’. Celani & Seminara (2005), using different arguments, arrive at
the same conclusion. However, both processes lead to uniformity along nearby paths.
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5. Scalar dissipation
5.1. Dissipation

The shape of the overall concentration distribution P (C) and its rate of evolution in
time give access to the scalar dissipation rate (Zeldovich 1937)

χ = − d

dt
〈C2〉 = 2D〈(∇C)2〉, (5.1)

a quantity of fundamental interest and sometimes modelled for closure purposes.
Starting with the Laplace transform of the distribution of the confined mixture for
which the average concentration is conserved P̃ (s) = (1 + (s/n)〈C〉)−n, one has

〈C2〉 = 〈C〉2 ∂2

∂s2
P̃ (s)

⏐⏐⏐⏐
s=0

, (5.2)

that is
〈C2〉
〈C〉2

= 1 +
1

n
, (5.3)

with n= 1/C(0, t) ∼ (t/ts)
5/2, the order of the corresponding gamma distribution.

Therefore, for finite ts , that is for D �= 0 and for t > ts ,

χ =
〈C〉2

ts

(
t

ts

)−7/2

. (5.4)

The dissipation χ shifts towards zero as t/ts → ∞. When D → 0, that is for
ts → ∞, χ remains equal to zero at all times. For these kinds of flows at least, there
is obviously no way to alter the concentration distribution of a mixture in the limit
of a vanishingly small scalar diffusivity. Balmforth & Young (2003) provide a similar
discussion in the context of heat transfer at a wall: the injection of scalar fluctuations
is diffusion-limited at the wall, so that χ goes to zero in the stirred bulk as the
scalar diffusivity vanishes (see also Falkovich, Gawedzki & Vergassola 2001 on the
distinguished limits t → ∞ versus D → 0 and the so-called dissipation anomaly).

Note finally that the spatial scale δ associated with the decay of χ is the width of
the scalar gradient, given by

√
Dt at large times, and not the coarse-grained scale η.

Indeed, χ defined in (5.1) can be written as

χ ∼ Dn(t)
C(0, t)2

δ2
, (5.5)

where the gradient squared (∇C)2 is written as (C(0, t)/δ)2 with C(0, t) ∼ (t/ts)
−5/2, the

maximal concentration of a sheet. With the number of sheets n(t) ∼ (t/ts)
5/2, owing

to the temporal decay of χ from (5.4) it is found that

δ ∼
√

Dt (5.6)

consistently with the scaling of the diffusion profile transverse width of a single
isolated sheet after the mixing time (see Appendix A).

5.2. Conditional dissipation

The typical width of the gradient δ ∼
√

Dt becomes, for the mixture confined in
the channel, of the order of the resolution scale of the images, allowing a direct
computation of 〈D(∇C)2〉. A further indication that the dissipation scale is effectively
resolved is that the two ways of computing the dissipation rate from the recorded
fields d〈C2〉/dt and 2D〈∇ C2〉 match.
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Figure 13. Transverse concentration gradient in the confined mixture experiment
at t/ts ≈ 3 for Sc = 2000.
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Figure 14. (a) Transverse gradient distribution at t/ts = 1, 1.5, 2, 3. (b) Conditional transverse
gradient distribution, for C/〈C〉 = 1/4, 1/2, 1, 2, 3, 4 and t/ts = 1. The variance of the gradient
distribution increases with C. Sc = 2000.

The analysis of the gradient distribution shows that the mixture is nearly isotropic
(figure 13), as the amplitudes of transverse (y direction) and longitudinal (x direction)
gradients are nearly equal (〈|∂yC|〉 =0.9〈|∂xC|〉). By symmetry, we further assume
that, when computing the total dissipation, the statistics of ∂zC, the component of
the gradient normal to the observation plane, are identical to those of the component
measured in the plane ∂yC, on average. The total gradient distribution presents
symmetrical exponential tails (figure 14), which are associated with large deviations
of the concentration C as can be seen on the conditional gradient distribution. The
conditional dissipation 〈D(∇C)2|C〉 is thus an increasing function of the concentration
(figure 15). The latter quantity is often measured in numerical simulations or modelled
as a closure term for the evolution of concentration distribution, since it permits one
to infer P (C, x, t) by the Liouville transport equation when the scalar is transported
by a velocity field u(x, t) (see e.g. Pope 1985; Sinai & Yakhot 1989; Dopazo 1994;
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Figure 15. Conditional dissipation for t/ts , varying from 1 to 3 at Sc = 2000. Dashed lines
correspond to (5.10) for n= 1 and n= 4, the corresponding orders of the concentration
distribution at time t/ts = 1 and t/ts = 3. For larger values of n, the curves superimpose with
that obtained for n= 4. The probability that C/〈C〉 exceeds 2 for gamma distributions of the
order n > 5 is smaller than 0.03; consequently the slight mismatch between experimental data
and the prediction is immaterial.

Fox 2004; Sawford 2004). It obeys

[∂t + ∇ · 〈u | C〉]P (C, x, t) = −∂C[〈D∇2C | C〉P (C, x, t)] (5.7)

or alternatively, using ∇2P = −∂C[(∇2C | C)P ] + ∂C2 [((∇C)2 | C)P ] (see Dopazo 1979;
Pope 2000),

[∂t + ∇ · 〈u | C〉]P (C, x, t) = D∇2P (C, x, t) − ∂2
C[〈D(∇C)2 | C〉P (C, x, t)]. (5.8)

Since the confined mixture is statistically homogeneous in the direction transverse to
the flow, this becomes

∂tP + ∂x[〈ux | C〉P ] = D∂2
xP − ∂2

C[〈D(∇C)2 | C〉P ]. (5.9)

The conditional dissipation 〈D(∇C)2 | C〉 can then be deduced from the shape and
temporal dependence if it is assumed that the correlation between velocity and con-
centration is weak (i.e. ∂x〈ux | C〉 � 0) and the diffusive term negligible, assumptions
whose consistency will be checked a posteriori.

With concentration distributions gamma distributed (i.e. P (C/〈C〉) ≡ Γn(C/〈C〉)) of
order n(t), one gets, integrating Γn(C/〈C〉) twice with respect to C and differentiating
it with respect to n(t),

D〈(∇C)2 | C〉 (nX)n Γ (n)

〈C〉2
Γn(X)

= −dn

dt
[n−2+n Xn (Γ (1 + n, nX) + n2 X Γ (n, nX) log(n)

− n Γ (1 + n, nX) log(n) + n2 X Γ (n, nX) log(X)

− n Γ (1 + n, nX) log(X) + n2 x MeijerG ({{}, {1, 1}}, {{0, 0, n}, {}}, n X)

− nMeijerG ({{}, {1, 1}}, {{0, 0, 1 + n}, {}}, n X)

− n2 XΓ (n, nX) PolyGamma (0, n) + nΓ (1 + n, nX) PolyGamma (0, n))], (5.10)
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where X = C/〈C〉. PolyGamma(0, n) = (dΓ (n)/dn)/Γ (n) and MeijerG denotes the
Meijeir’s G-function, written here in the MathematicaTM syntax. This complicated
formula is very well fitted with

D〈(∇C)2 | C〉
χ

� 0.96

(
C

〈C〉

)1.4

(5.11)

for 0 < C/〈C〉 � 3. The fair agreement between the experimental measurement of
the conditional scalar dissipation and the prediction in (5.10) derived from the self-
convolution construction of P (C, t) is an a posteriori proof that ∂x〈ux | C〉 � 0 in the
present flow or at least that the value of this correlation as well as the magnitude of
the diffusive term D∂2

xP have no appreciable consequence on the evolution equation
linking the concentration distribution with the conditional dissipation. The conditional
dissipation is an increasing function of the concentration level. This is consistent
with observations in Jayesh & Warhaft (1992), where temperature fluctuations are
injected in an air stream by the means of thin heated wires (the ‘mandoline’),
thus realizing an initially segregated concentration field like the one in the present
experiments. In the same conditions, the concentration distribution is positively
skewed. The same authors also report a U shape, symmetrical about the mean
conditional dissipation in the presence of a mean large-scale concentration gradient
giving rise to a symmetrical concentration distribution. Direct numerical simulation
(DNS) data are usually obtained for symmetrical situations in which the hot (coloured)
fluid parcels are evenly spread among cold (clear) parcels (see Eswaran & Pope 1988;
Fox & Raman 2004; see also Fox 1994 for a counter example). In that case, both
the concentration pair distribution function (PDF) and the conditional dissipation
are symmetric, by construction. Our experiments, in which 〈C〉 is always smaller than
1/2, retain an imprint of their original asymmetry for the whole mixture evolution, as
concentration fluctuations arise positively from essentially zero, the diluting medium
concentration baseline: this is the elementary sheet description of the scalar field. The
higher concentration levels are associated with the steepest concentration gradients,
whereas the lowest concentrations are associated with smoother gradients, hence
the shape of the conditional dissipation 〈D(∇C)2 | C〉 dependence on C shown in
figure 15.

The singular case of symmetrical mixtures (i.e. with a symmetrical concentration
distribution) is to be discussed along the same lines except that concentrations are
counted from the mean rather from zero (see Appendix B).

5.3. Mapping closure approximation

The probability density function of some concentration field C may be represented
through a mapping function X(ψ, r, t), such that C(r, t) =X(ψ(r, t), r, t), with ψ a
Gaussian variable. For simplicity, the mapping can be chosen so that the variance of
the ψ distribution is equal to 1 for every spatial location r and all values of time t .
Since we are considering homogeneous concentration fields, the mapping function X

does not in fact depend on r , and it can be deduced from the equality

P(X(ψ, t), t) = erf(ψ/
√

2), (5.12)

where P(C, t) =
∫ C

0
P (c, t) dc denotes the cumulative distribution of P (C, t). This

defines the unique mapping C =X(ψ) that is an increasing function of ψ .
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For a homogeneous flow, the evolution equation for the concentration distribution
is, as already noted,

∂P (C, t)

∂t
= −∂D〈�C | C〉P

∂C
. (5.13)

Consequently, dtP(X(ψ, t), t) = ∂tX(ψ, t)P (X, t) − D〈�C | ψ〉P (X, t) = 0, and thus

∂X(ψ, t)

∂t
= D〈�C | ψ〉 = D

((
∂X

∂ψ

)
〈�ψ | ψ〉 +

(
∂2X

∂ψ2

)
〈(∇ψ)2 | ψ〉

)
. (5.14)

This representation has been found convenient, since in the longtime limit, as the
concentration distribution tends towards the Gaussian, the mapping function tends
towards a linear relationship between ψ and C. There can be an interpretation of
(5.14) as a convection diffusion equation of X in the ψ space, leading to a linearization
of the profile X(ψ) at large time.

The mapping closure approximation developed by Chen, Chen & Kraichnan (1989)
and Kimura & Kraichnan (1993) allows to make a prediction of the evolution
equation of X through a supplementary assumption on the ψ field: it is assumed
that ψ is a multivariate Gaussian field, which implies that the two-point distribution
P (ψ(r1), ψ(r2)) is also Gaussian. This has consequences on the statistics of the de-
rivative of ψ , since under this assumption 〈(∇ψ)2 | ψ〉 = 〈(∇ψ)2〉 is independent of ψ ,
and 〈�ψ | ψ〉 = −ψ〈(∇ψ)2〉/〈ψ2〉, where 〈ψ2〉 = 1 has been used. Then, (5.14) becomes

∂X

∂t
= D〈∇ψ2〉

(
−ψ

∂X

∂ψ
+

∂2X

∂ψ2

)
. (5.15)

There are thus two contributions to the evolution of X versus ψ: First, ∂tX =
−D〈∇ψ2〉ψ∂ψX is a dilatation around ψ = 0 of the X shape. This is related to the
decrease of the variance of the concentration distribution, without any change in the
distribution shape. Second, ∂tX = −D〈∇ψ2〉∂2

ψX is a diffusion process of the X shape,
making it tend towards a linear function of ψ , corresponding to a concentration
distribution tending towards the Gaussian. However, the assumption that ψ is a mul-
tivariate Gaussian field has no fundamental reason to be fulfilled for real concentration
fields and is not in general: this assumption implies in particular that the distribution
of ∇ψ for a given value of ψ is Gaussian, which also implies that the distribution of
∇C = ∂ψX∇ψ for the value C = X(ψ) is Gaussian, a fact that is notably not true (see
e.g. figure 14). We now make an attempt at proposing corrections for (5.15).

The self-convolution process that is described in § 3 also leads to a reduction of the
concentration variance and an evolution of the distribution shape: the concentration
distribution is found to be a gamma distribution of order n(t), with variance 1/n. The
corresponding mapping function X can be computed (figure 16), and its evolution
can be compared with (5.15). The major effect is the variance reduction, so that it is
useful to use a new set of rescaled variable

n = n(t) = 〈C〉2/σ 2
C,

ψ = ψσC/〈C〉 = ψ/n1/2,

}
(5.16)

where σ 2
C denotes the scalar variance. Using these variables, (5.15) is written as

∂X

∂n
=

1

2n2

∂2X

∂ψ2
, (5.17)
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Figure 16. Mapping function for gamma distribution of the order = 1, 4, 7, 10.

while the whole of (5.14) becomes

∂X

∂n
=

(
1

2n2

)((
∂X

∂ψ

) [
nψ + 〈�ψ | ψ〉 〈C〉2

〈(∇C)2〉

]
+

(
∂2X

∂ψ2

)[
〈(∇ψ)2 | ψ〉 〈C〉2

〈(∇C)2〉

])
.

(5.18)

This evolution equation can be approached by a general form

∂X

∂n
=

(
1

2n2

)((
∂X

∂ψ

)
U +

(
∂2X

∂ψ2

)
D

)
, (5.19)

where U and D are constant. (For the mapping closure approximation U = 0 and
D = 1.) Choosing U ≈ 0.3 and D ≈ 0.6 nearly equilibrates both sides of (5.19), with
a mismatch smaller than 10%. Of course the new evolution equation obtained for the
mapping evolution is incomplete, as it does not conserve the average concentration,
but this is at least a good approximation in the central region ψ ∈ [−2 2].
The corresponding values are compared with the experimental measurement of
[nψ + 〈�ψ | ψ〉(〈C〉2/〈(∇C)2〉)] and of [〈(∇ψ)2 | ψ〉(〈C〉2/〈(∇C)2〉)] in figure 17. A
significant disagreement is found between experimental data and both the mapping
closure approximation and the gamma distribution sets. However, it is through an
arbitrary choice that U and D are independent of ψ for the gamma distribution set,

and since in (5.19) both ∂ψX and ∂2
ψX are positive, an overestimation of U leads to

an underestimation of D.
Hence the mapping evolution equation cannot be written as simply as (5.19), with

constant coefficients, and the dependence of U and D on ψ has to be taken into
account. These forms cannot be uniquely determined from the gamma distributions
evolution together with (5.19) either; this failure is a consequence of the fundamental
premise of the Mapping Closure Approximation: the two-point statistics of the scalar
field is not Gaussian (see e.g. figure 14). Spatial correlations, reflected by the existence
of a coarsened scale much larger than the dissipation scale (§ 4.1), unavoidably dismiss
this assumption.
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Figure 17. (a) Experimental measurement of [nψ + 〈�ψ | ψ〉〈C〉2/〈(∇C)2〉] for 1 � n � 3 and
comparison with prediction of the mapping closure approximation (MCA) and the gamma
distributions set evolution (with U taken to be constant). (b) Experimental measurement
of [〈(∇ψ)2 | ψ〉〈C〉2/〈(∇C)2〉] for 1 � n � 3 and comparison with prediction of the mapping
closure approximation and the gamma distribution set evolution (with D taken to be constant).

6. Conclusion and further remarks
We have analysed mixtures evolving under confinement. In this limit, the particles

are forced to aggregate, that is to add to their concentration levels. As soon as the
mixture is stirred in a more or less random manner, the addition is made at random
among the levels available in the current distribution. This operation implies that the
concentration distribution evolves by self-convolution and, when it does, gives an a
posteriori precise definition of what ‘random’ means. The kinetic equation expressing
this process (3.14) gives rise to stable gamma distributions. They have been found to
represent accurately the content of a mixture keeping its average concentration 〈C〉
constant, as well as its rate of deformation in time (§§ 2 and 3).

We would like to close with some remarks on the consistency and limits of, and
the questions opened on, the aggregation scenario we have presented here:

(i) The addition of random variables erases the differences from the mean as a
general property of the central limit theorem (Feller 1970), and it is generally agreed
that this process is the recipe for making Gaussian distributions. This is indeed true
at the limit of a very large number of composition operations and when one is
interested in the shape of the distribution around its maximum, at the precision of
its standard deviation (see e.g. the discussion in § 4.2). It is clear that the bell-shaped
concentration distributions close to the uniform limit in the channel flow (see figure 6)
might well be approximated by Gaussians. However, we have shown how the mixture
evolution selects a particular route towards uniformity, directed by an aggregation
process, which pertains to the central limit paradigm, as it involves sums of random
variables, but which does not imply, in its transient development, Gaussians.

(ii) The aggregation scenario ignores the fluctuations in the elongation rate, which
are large in turbulent flows (Voth, Haller & Gollub 2002). These are revealed by the
shape of the ‘bare’ distribution of an ever-dispersing mixture, such as the one shown
in figures 19 and 20, for which P (C) never converges with a gamma distribution
(Villermaux, Innocenti & Duplat 1998; Villermaux & Innocenti 1999; Villermaux,
Innocenti & Duplat 2001; Lavertu & Mydlarski 2005). Conversely, the aggregation
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Figure 18. A comparison between real data obtained in the channel flow at (x − d)/L =1.5
and Re = 2 × 103 with 〈C〉 = 0.4 (�), the gamma distribution with n= 11.5 (dotted line) and
the beta distribution with same mean and variance (continuous line). (a) In log–lin scales.
(b) In lin–lin scales. The fit by the beta distribution may look satisfactory in lin–lin scales
(although the distribution is not well described around its maximum), but its inadequacy
is evident in log–lin scales: the beta distribution does not capture the exponential fall-off,
originating from the aggregation process at the core of the distribution construction, unlike
the gamma distribution. The figure also shows the limits of the diluted limit giving rise to
gamma distributions. The low concentration side of the distribution departs from the pure
gamma shape for an average concentration close to 1/2.

Figure 19. A snapshot of a dispersing plume made by the injection of a dye through a small
tube of diameter d = 8 mm on the axis of a larger turbulent jet whose integral scale is L = 8 cm
at the injection location. Re = u′L/ν = 104.

scenario does not hold for such a mixture, which disperses so fast that sheets have
no time to merge. However, these fluctuations of concentration due to unequal
elongations among different sheets which have not interacted at a given instant of
time are progressively hindered by the aggregation process, when it has a chance to
occur, as for the confined mixture.

A natural question to ask is whether, for any given flow, aggregation takes over
dispersion. The more dispersing the mixture, the less chance sheets have to meet
and aggregate. A simple estimate is to compare the rate of decrease of the average
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Figure 20. (a) Concentration distributions P (C) of the ever-dispersing mixture of figure 19
recorded at x/d = 10 for three different Schmidt numbers. The shape of the distributions is
exponential near the grey-shaded regions like P (C) ∼ exp(−αC). Insert: The argument α
for different downstream locations x/d , Reynolds numbers and three Schmidt numbers. �:
Sc = 2000, Re =6000 and 12 000, d/L =0.05, 0.1, 0.6. �: Sc = 7, Re = 6000, d/L = 0.05, 0.1, 0.16.
�: Sc = 0.7, d/L = 0.08, Re = 23 000. �, �: Sc =0.7, d/L =0.08, Re = 45 000. (b) Downstream
evolution of the average concentration 〈C〉 in the ever-dispersing mixture of figure 19 for three
different injection diameters and two Schmidt numbers. Insert: Downstream evolution of the

fluctuations C ′/〈C〉 =
√

〈C2〉/〈C〉2 − 1. Re = 6000, d/L = 0.05 (�), 0.1 (�), 0.16 (�), Sc = 2000.
For Sc = 7, same open symbols.

concentration (−d〈C〉/dt)/〈C〉, representative of the dispersive properties of the
mixture, with the mixing time t−1

s . As long as (−d〈C〉/dt)/〈C〉 > t−1
s , the mixture

disperses so fast that particle interaction is unlikely. Estimating (−d〈C〉/dt)/〈C〉 ∼ u/d

for the dispersing mixture in figure 19 and ts ∼ (d/u)Sc1/5, aggregation is not likely
to occur once Sc > 1. The case Sc = 0.7 is borderline, and indeed the cusp of P (C)
at C =0 is less pronounced than for Sc = 7 and Sc = 2000, as seen in figure 20,
indicating some amount of self-convolution. When 〈C〉 is conserved through time,
however, aggregation takes over, at a rate prescribed by the average mixing time.

(iii) An interesting consequence of the aggregative vision is the existence of a very
large scale in the scalar field compared to the usual scales resulting from local balances
(§ 4.1). That length scale η = LSc−2/5 is the transverse size of the domains in the flow
in which the concentration C is defined. It results from the coalescence of bundles
of sheets under the action of a large-scale strain, established at the integral scale of
the flow L. As opposed to local balances setting the size of the fine-scale gradient
of the elementary sheets, this new scale results from a non-local fusion mechanism
consistent with the construction mechanism of the concentration distribution.

(iv) The beta distribution

P (C) = Γ (a + b)/Γ (a)Γ (b)Ca−1(1 − C)b−1 (6.1)

with a and b the functions of the concentration mean and variance is often used as a
convenient fit for the concentration distribution in modelling (Fox 2004). Besides the
fact that it has no chance to ‘look like’ a gamma distribution on a log scale (and it does
not indeed; see figure 18), in particular because it does not fall exponentially, the beta
distribution does not present the decisive property of being stable by self-convolution,
a property which, as this study suggests, is mandatory for confined mixtures.
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(v) We have purposely formalized the aggregation scenario and the corresponding
kinetic equations in the diluted limit: concentration levels C are counted from 0
to 1, and we add random variables from 0. This obviously applies to situations
in which elementary sheets are well defined in a zero-concentration environment.
In other words, this limit applies well for mixtures in which the white mixes in
the black with an average concentration of white 〈C〉 below 1/2. Otherwise, the
concentration C would represent that of the black in the white, and the distribution
would be skewed the other way. This does not cause any principle problem, since
diffusion is a linear phenomenon, and C can well be defined as 1 − C. However, for
mixtures incorporating as much white as black, the mean field description we have
adopted would rather suggest counting concentration levels from 〈C〉, that is defining
c = C − 〈C〉 and deriving the same convolution equations for p(c). Fourier (because
c can now be negative) rather than Laplace transforms of the corresponding kinetic
equations indicate that now the distributions have exponential tails on both sides of
the mean, the negative wing representing black sheets aggregating in a grey medium
at the average concentration (see figure 18 and Appendix B).

(vi) The success of the random aggregation scenario, and the associated self-
convolution construction of P (C), is in itself an enigma. We have adopted this rule
because of the clue experimental facts presented here, but this rule is, in our analytic
treatment, an ad hoc assumption. It works so well that it is very likely to have a deep
fundamental origin. In particular, the key point to address would be to understand
why the ‘maximal randomness hypothesis’ expressed by the convolution operation,
disregarding correlations in the medium in the composition operation, works so well.
This question could be investigated by perhaps using simple stirring protocols as the
deterministic maps familiar in ergodic theory (Arnold & Avez (1967), coupled with dif-
fusive smearing. These approaches have already succeeded to recover mixing times in
some cases (Fannjiang, Nonnenmacher & Wolonski 2004) and may succeed in deriving
the self-convolution property of P (C) from first principles – and appropriate maps.

We are indebted to Claudia Innocenti, with whom this study started, and to
Jean-Paul Barbier Neyret for his decisive help with data acquisition. Over the years,
this work has been supported by the Société Europénne de Propulsion (SEP) under
contract 910023, the Centre National d’Études Spatiales (CNES) under contract
02-0485-00 and the Centre National de la Recherche Scientifique (CNRS) and the
Agence Nationale de la Recherche (ANR) through grant ANR-05-BLAN-0222-01.

Appendix A. Stretching enhanced diffusion
Focus on the scale of the elementary scalar sheets visible from the intercept with

the visualization plane (figure 19). It is known that a succession of random stretching
motions applied to passive objects form sheets (Betchov 1956; Girimaji & Pope
1990; Duplat & Villermaux 2000) for which there is some experimental evidence (see
Ottino 1989; Buch & Dahm 1996). Let us consider a single sheet, and let C be the
scalar concentration in the vicinity of the sheet and z a coordinate in the direction
normal to the iso-concentration surface C. The diffusive uniformization of the dye
is enhanced by the stretching of the underlying motions. The convection–diffusion
transport equation for C reduces (see e.g. Levque 1928; Mohr, Saxton & Jepson 1957;
Marble & Broadwell 1977; Ranz 1979; Rhines & Young 1983; Allgre & Turcotte
1986; Marble 1988; Ottino 1989; Beigie, Leonard & Wiggins 1991; Meunier &
Villermaux 2003; Fannjiang et al. 2004) to a one-dimensional problem when the radius
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of curvature of the iso-concentration surface is large compared to the lamella thickness
(Dimotakis & Catrakis 1999). Let s(t) be the distance between two material particles
in the direction z perpendicular to a sheet and

γ (t) =
d ln{s(t)}

dt
(A 1)

its rate of compression. The mass conservation equation of a species with diffusion
coefficient D then becomes

∂C

∂t
+ γ (t)z

∂C

∂z
= D

∂2C

∂z2
. (A 2)

By the change of variables

τ = D

∫ t

0

dt ′

s(t ′)2
and ξ =

z

s(t)
, (A 3)

(A 2) is reduced to a simple diffusion equation

∂C

∂τ
=

∂2C

∂ξ 2
. (A 4)

Suppose that the lamella has an initial width s0 and uniform concentration, so that
its concentration profile is ‘top hat’. At any later time, its concentration profile is the
solution of (A 3) (see e.g. Villermaux & Rehab 2000; Meunier & Villermaux 2003)
from which it follows that the maximal concentration in the lamella is

C(0, t) = erf

(
1

4
√

τ

)
. (A 5)

With

s(t) =
s0

(1 + σ t)2
, (A 6)

as implied, using mass conservation �(t)2s(t) ∼ s3
0 , by the experimentally observed

linear increase of material contours lengths and from (A 3),

τ =
1

5 Pe
(−1 + (1 + σ t)5) with Pe =

σs2
0

D
. (A 7)

The mixing time ts , reached when τ =O(1), is thus, when the Péclet number Pe is
larger than unity,

ts ∼ 1

σ
Pe1/5 and C(0, t) ∼

(
t

ts

)−5/2

for t > ts. (A 8)

In figure 21 are plotted s(t), the sheet thickness σC defined from the variance of the
concentration profile

σ 2
C =

∫ ∞

−∞
z2C(z, t)∫ ∞

−∞
C(z, t)

(A 9)

and the maximal concentration C(0, t) in the course of time (see also Villermaux &
Rehab 2000). It is seen that the thickness of the diffusion profile follows the decrease
imposed by the kinematics of the flow up to the mixing time. At that moment, the
lamella has reduced to a sheet which is aligned parallel to the streamlines of the
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Figure 21. (a) Sketch of an isolated stretched scalar lamella being compressed in its transverse
direction and the associated concentration profile. (b) Evolutions as a function of σ t and for
Pe = σs2

0/D = 107 of thickness s(t)/s0 given by (A 6) (dotted line); standard deviation σC of
the concentration profile across the lamella given by (A 9) normalized by s0 (continuous line);
maximal concentration C(0, t) at the centre of the sheet given by (A 5) (broken line).

Figure 22. A folded sheet seen at consecutive instants of time, embedded in a three-
dimensional turbulent flow and undergoing coalescence. The sheet is made visual by a planar
two-dimensional cut through the medium. Length and time scales are given in figure 23.

flow after which, for t � ts , the maximal concentration C(0, t) decays as (σ t)−5/2,
and the sheet thickness re-increases diffusively like (Dt)1/2. (The rate of compression
d ln s(t)/dt decays like 1/t so that molecular diffusion becomes finally dominant.)

Figure 22 shows how two pieces of a folded sheet embedded at a saddle point of
the underlying displacement field are brought close to each other in the dispersing
mixture. The distance between the two elements decays like t−2, while the maximal
concentration in the sheets decays as t−5/2 according to (A 6) and (A 8), as seen in
figure 23. The concentration field resulting from the interpenetration of the two sheets
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Figure 23. (a) Spatial concentration profiles C(z, t) of the folded coalescing sheet shown in
figure 22, superimposed for successive instants of time. The sheet moves perpendicular to
itself, as its two pieces get closer; the figure shows the concentration profiles resulting from the
intersection of the sheet in figure 22 with a line fixed in space. (b) The distance s(t) between the
maxima of concentration of the profiles (�) and the evolution of the maximal concentration
C(0, t) of the overall profile (�) as a function of time.

is the addition of the concentration profiles of each individual sheet, a consequence
of the linearity of the Fourier diffusion equation (Fourier 1822).

Appendix B. Convolutions around the mean
We derive here the shape of the concentration distribution evolving through the self-

convolution process described in § 3, counting now the concentration levels not from
0 but from the average concentration 〈C〉. We therefore define a concentration c such
that c = C − 〈C〉, and we look for its distribution p(c). For the same reason which is
outlined in § 3 – and which basically comes from the linearity of the Fourier diffusion
equations – the concentration levels c obey an addition rule, whose translation in the
probability space of p(c) is a self-convolution process. The concentration c can be
positive or negative, and for 〈C〉 =1/2, the distribution p(c) has a zero mean and is
obviously symmetric.

We study the following kinetic equation for p(c), formally identical to (3.9) in § 3:

∂tp = n
(
−p + p⊗1+1/n

)
, (B 1)

where n is a positive number, and the time t is dimensionless. The concentration c

being a positive or negative real number, we define the Fourier transform p̃(k) of
p(c) as

p̃(k) =

∫
eikcp(c) dc. (B 2)

The Fourier transform of (B 1) thus becomes

∂t p̃ = n
(
−p̃ + p̃1+1/n

)
. (B 3)

It is useful to introduce an auxiliary distribution q(c) such that

p(c) = q(c)⊗n, that is p̃ = q̃n, (B 4)
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and check that its evolution equation is

∂t q̃ = −q̃ + q̃2. (B 5)

The moments of p(c) are generated by 〈cm〉 =(i)m∂mp̃/∂km. We have 〈c〉 =0, and
we call σ 2 = 〈c2〉 the variance of p(c). Now p(c) has a zero mean, and so has q(c).
Therefore, we call σ 2

q the variance of q(c). Clearly, σ 2 = nσ 2
q . Following the procedure

in § 3, we look for an asymptotic similarity solution for q(c) by introducing a scaled
distribution f (η, τ ) such that

q(c, t) =
1

σq

f (η, τ ),

η =
c

σq

,

τ = t.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B 6)

One checks that

q̃(k, t) = f̃ (k′, τ ) with k′ = kσq. (B 7)

From (B 5) and remembering that q̃(0, t) = 1 and ∂q̃(0, t)/∂k =0, one has

∂tσq =
1

2
σq. (B 8)

Noting that

∂q̃

∂t
=

∂f̃

∂k′
∂k′

∂t
+

∂f̃

∂τ

∂τ

∂t
= k′ ∂f̃

∂k′

(
1

σq

∂σq

∂t

)
+

∂f̃

∂τ
, (B 9)

one obtains the evolution equation for f (k′), which in the asymptotic stationary limit
(letting ∂f̃ /∂τ → 0) is

k′∂k′ f̃ = 2(−f̃ + f̃ 2) (B 10)

whose solution, satisfying ∂2f̃ /∂k′2 = −1 by definition, is

f̃ =
1

1 +
k′2

2

(B 11)

and whose inverse Fourier transform provides q(c) as

q(c) =
1

2σq

e−|c|/σq . (B 12)

Finally, the distribution p(c) is obtained from the inverse Fourier transform of (B 11)
raised to the power n, since p̃ = q̃n, that is

p̃ =
1(

1 +
(kσ )2

2n

)n , (B 13)

which means

p

(
x =

c

σ

)
=

23/4−n/2 nn/2+1/4 | x|n−1/2K1/2−n(
√

2 n | x|)√
π Γ (n)

, (B 14)

where K1/2−n is the modified Bessel function of the third kind and the order 1/2 − n.
The shape of p(x) is displayed in figure 24 for various values of n. As expected, this
shape goes from singular and cusped to round and bell-like as n increases, all with
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Figure 24. Distributions p(x) given by (B 14) for various values of n: cusped shape, n= 0.5;
tent shape, n= 1; bell shape, n= 10. Insert: corresponding conditional dissipation.

symmetric exponential wings. This one-parameter family of distributions is the strict
analogue of the gamma distributions in (2.2), generalized to a situation in which the
convolution construction is made for the fluctuations around the mean and not from
C = 0 (see also Villermaux, Stroock & Stone 2008 for an application).

The concentration gradient squared conditioned to c in that case gives

〈(∇c)2 | x = c/σ 〉
〈(∇c)2〉 = − 2

p(x)

[∫ ∞

x

dx1

∫ ∞

x1

dx2 n
∂

∂n

(
p(x2, n)

n

)]
(B 15)

and has a symmetric U shape (see § 5.2), as seen in figure 24.
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Editeur.

Balmforth, N. J. & Young, W. R. 2003 Diffusion-limited scalar cascades. J. Fluid Mech. 482,
91–100.

Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in a turbulent
fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133.

Beigie, D., Leonard, A. & Wiggins, S. 1991 A global study of enhanced stretching and diffusion
in cahotic tangles. Phys. Fluids A 3 (5), 1039–1050.

Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence.
J. Fluid Mech. 1, 497–504.

Buch, K. A., Jr & Dahm, W. J. A. 1996 Experimental study of the fine-scale structure of conserved
scalar mixing in turbulent shear flows. Part 1. Sc � 1. J. Fluid Mech. 317, 21–71.

Celani, A. & Seminara, A. 2005 Large-scale structure of passive scalar turbulence. Phys. Rev. Lett.
94, 214503.

Chen, H., Chen, S. & Kraichnan, R. H. 1989 Probability distribution of a stochastically advected
scalar field. Phys. Rev. Lett. 63, 2657.

Chertkov, M., Kolokolov, I. & Lebedev, V. 2007 Strong effect of weak diffusion on scalar
turbulence at large scales. Phys. Fluids 19 (10), 101703.



Mixing by random stirring 85

Clay, P. H. 1940 The mechanism of emulsion formation in turbulent flow. 1. Experimental part.
Proc. R. Acad. Sci. (Amsterdam) 43, 852–865.

Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence.
J. Appl. Phys. 22, 469–473.

Curl, R. L. 1963 Dispersed phase mixing. I. Theory and effect in simple reactors. AIChE J. 9 (2),
175–181.

Danckwerts, P. V. 1953 Theory of mixtures and mixing. Research 6, 355–361.

Dimotakis, P. E. & Catrakis, H. J. 1999 Turbulence, fractals and mixing. In Mixing Chaos
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